Equitable total chromatic number of splitting graph

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

total dominator chromatic number of a graph

given a graph $g$, the total dominator coloring problem seeks aproper coloring of $g$ with the additional property that everyvertex in the graph is adjacent to all vertices of a color class. weseek to minimize the number of color classes. we initiate to studythis problem on several classes of graphs, as well as findinggeneral bounds and characterizations. we also compare the totaldominator chro...

متن کامل

The Equitable Total Chromatic Number of Some Join graphs

A proper total-coloring of graph G is said to be equitable if the number of elements (vertices and edges) in any two color classes differ by at most one, which the required minimum number of colors is called the equitable total chromatic number. In this paper, we prove some theorems on equitable total coloring and derive the equitable total chromatic numbers of Pm ∨ Sn, Pm ∨ Fn and Pm ∨Wn. Keyw...

متن کامل

DOMINATION NUMBER OF TOTAL GRAPH OF MODULE

 Let $R$ be a commutative ring and $M$ be an $R$-module with $T(M)$ as subset, the set of torsion elements. The total graph of the module denoted by $T(Gamma(M))$, is the (undirected) graph with all elements of $M$ as vertices, and for distinct elements $n,m in M$, the vertices $n$ and $m$ are adjacent if and only if $n+m in T(M)$. In this paper we study the domination number of $T(Gamma(M))$ a...

متن کامل

On the equitable chromatic number of complete n-partite graphs

In this note, we derive an explicit formula for the equitable chromatic number of a complete n-partite graph Kp1 ;p2 ;:::;pn . Namely, if M is the largest integer such that pi (modM)¡ ⌈pi M ⌉ (i = 1; 2; : : : ; n) then e(Kp1 ;p2 ;:::;pn) = n ∑

متن کامل

The set chromatic number of a graph

For a nontrivial connected graph G, let c : V (G) → N be a vertex coloring of G where adjacent vertices may be colored the same. For a vertex v of G, the neighborhood color set NC(v) is the set of colors of the neighbors of v. The coloring c is called a set coloring if NC(u) 6= NC(v) for every pair u, v of adjacent vertices of G. The minimum number of colors required of such a coloring is calle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proyecciones (Antofagasta)

سال: 2019

ISSN: 0717-6279

DOI: 10.22199/issn.0717-6279-2019-04-0045